Thermal comfort

This article is about comfort zones in building construction. For other uses, see Comfort zone (disambiguation).

Thermal comfort is the condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation (ANSI/ASHRAE Standard 55).[1] Maintaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC (heating, ventilation, and air conditioning) design engineers.

Thermal neutrality is maintained when the heat generated by human metabolism is allowed to dissipate, thus maintaining thermal equilibrium with the surroundings. The main factors that influence thermal comfort are those that determine heat gain and loss, namely metabolic rate, clothing insulation, air temperature, mean radiant temperature, air speed and relative humidity. Psychological parameters such as individual expectations also affect thermal comfort.[2]

The Predicted Mean Vote (PMV) model stands among the most recognized thermal comfort models. It was developed using principles of heat balance and experimental data collected in a controlled climate chamber under steady state conditions.[3] The adaptive model, on the other hand, was developed based on hundreds of field studies with the idea that occupants dynamically interact with their environment. Occupants control their thermal environment by means of clothing, operable windows, fans, personal heaters, and sun shades.[2] [4]

The PMV model can be applied to air conditioned buildings, while the adaptive model can be generally applied only to buildings where no mechanical systems have been installed.[1] There is no consensus about which comfort model should be applied for buildings that are partially air conditioned spatially or temporally.

Thermal comfort calculations according to ANSI/ASHRAE Standard 55 [1] can be freely performed with the CBE Thermal Comfort Tool for ASHRAE 55.

Similar to ASHRAE Standard 55 there are other comfort standards like EN 15251[5] and the ISO 7730 standard.[6][7]

Significance of thermal comfort

Satisfaction with the thermal environment is important for its own sake and because it influences productivity and health. Office workers who are satisfied with their thermal environment are more productive.[8] Thermal discomfort has also been known to lead to sick building syndrome symptoms.[9] The combination of high temperature and high relative humidity serves to reduce thermal comfort and indoor air quality.[10]

Although a single static temperature can be comfortable, thermal delight, alliesthesia is usually caused by varying thermal sensations. Adaptive models of thermal comfort allow flexibility in designing naturally ventilated buildings that have more varying indoor conditions.[11] Such buildings may save energy and have the potential to create more satisfied occupants.[2]

Factors influencing thermal comfort

Since there are large variations from person to person in terms of physiological and psychological satisfaction, it is hard to find an optimal temperature for everyone in a given space. Laboratory and field data have been collected to define conditions that will be found comfortable for a specified percentage of occupants.[1]

There are six primary factors that directly affect thermal comfort that can be grouped in two categories: personal factors - because they are characteristics of the occupants - and environmental factors - which are conditions of the thermal environment. The former are metabolic rate and clothing level, the latter are air temperature, mean radiant temperature, air speed and humidity. Even if all these factors may vary with time, standards usually refer to a steady state to study thermal comfort, just allowing limited temperature variations.

Metabolic rate

People have different metabolic rates that can fluctuate due to activity level and environmental conditions.[12][13][14] The ASHRAE 55-2010 Standard defines metabolic rate as the level of transformation of chemical energy into heat and mechanical work by metabolic activities within an organism, usually expressed in terms of unit area of the total body surface. Metabolic rate is expressed in met units, which are defined as follows:

1 met = 58.2 W/m² (18.4 Btu/h·ft²), which is equal to the energy produced per unit surface area of an average person seated at rest. The surface area of an average person is 1.8 m² (19 ft²).[1]

ASHRAE Standard 55 provides a table of met rates for a variety of activities. Some common values are 0.7 met for sleeping, 1.0 met for a seated and quiet position, 1.2-1.4 met for light activities standing, 2.0 met or more for activities that involve movement, walking, lifting heavy loads or operating machinery. For intermittent activity, the Standard states that is permissible to use a time-weighted average metabolic rate if individuals are performing activities that vary over a period of one hour or less. For longer periods, different metabolic rates must be considered.[1]

According to ASHRAE Handbook of Fundamentals, estimating metabolic rates is complex, and for levels above 2 or 3 met – especially if there are various ways of performing such activities – the accuracy is low. Therefore, the Standard is not applicable for activities with an average level higher than 2 met. Met values can also be determined more accurately than the tabulated ones, using an empirical equation that takes into account the rate of respiratory oxygen consumption and carbon dioxide production. Another physiological yet less accurate method is related to the heart rate, since there is a relationship between the latter and oxygen production.[15]

The Compendium of Physical Activities is used by physicians to record physical activities. It has a different definition of met that is the ratio of the metabolic rate of the activity in question to a resting metabolic rate.[16] As the formulation of the concept is different from the one that ASHRAE uses, these met values cannot be used directly in PMV calculations, but it opens up a new way of quantifying physical activities.

Food and drink habits may have an influence on metabolic rates, which indirectly influences thermal preferences. These effects may change depending on food and drink intake.[17] Body shape is another factor that affects thermal comfort. Heat dissipation depends on body surface area. A tall and skinny person has a larger surface-to-volume ratio, can dissipate heat more easily, and can tolerate higher temperatures more than a person with a rounded body shape.[17]

Clothing insulation

Main article: Clothing insulation

The amount of thermal insulation worn by a person has a substantial impact on thermal comfort, because it influences the heat loss and consequently the thermal balance. Layers of insulating clothing prevent heat loss and can either help keep a person warm or lead to overheating. Generally, the thicker the garment is, the greater insulating ability it has. Depending on the type of material the clothing is made out of, air movement and relative humidity can decrease the insulating ability of the material.[18][19]

1 clo is equal to 0.155 m²·K/W (0.88 °F·ft²·h/Btu). This corresponds to trousers, a long sleeved shirt, and a jacket. Clothing insulation values for other common ensembles or single garments can be found in ASHRAE 55.[1]

Air temperature

Main article: Dry-bulb temperature

The air temperature is the average temperature of the air surrounding the occupant, with respect to location and time. According to ASHRAE 55 standard, the spatial average takes into account the ankle, waist and head levels, which vary for seated or standing occupants. The temporal average is based on three-minutes intervals with at least 18 equally spaced points in time. Air temperature is measured with a dry-bulb thermometer and for this reason it is also known as dry-bulb temperature.

Mean radiant temperature

The radiant temperature is related to the amount of radiant heat transferred from a surface, and it depends on the material’s ability to absorb or emit heat, or its emissivity. The mean radiant temperature, depends on the temperatures and emissivities of the surrounding surfaces as well as the view factor, or the amount of the surface that is “seen” by the object. So the mean radiant temperature experienced by a person in a room with the sunlight streaming in varies based on how much of her body is in the sun.

Operative temperature

Main article: Operative temperature

Operative temperature attempts to combine the effects of air and mean radiant temperatures into one metric. It is often approximated as the average of the air dry-bulb temperature and of the mean radiant temperature at the given place in a room. In buildings with low thermal mass, the operative temperature is sometimes considered to be simply the air temperature.

Air speed

Air speed is defined as the rate of air movement at a point, without regard to direction. According to ASHRAE Standard 55, it is the average speed of the air to which the body is exposed, with respect to location and time. The temporal average is the same as the air temperature, while the spatial average is based on the assumption that the body is exposed to a uniform air speed, according to the SET thermo-physiological model. However, some spaces might provide strongly nonuniform air velocity fields and consequent skin heat losses that cannot be considered uniform. Therefore, the designer shall decide the proper averaging, especially including air speeds incident on unclothed body parts, that have greater cooling effect and potential for local discomfort.[1]

Relative humidity

Main article: Relative humidity

Relative humidity is the ratio of the amount of water vapor in the air to the amount of water vapor that the air could hold at the specific temperature and pressure. While the human body has sensors within the skin that are fairly efficient at feeling heat and cold, relative humidity (RH) is detected indirectly. Sweating is an effective heat loss mechanism that relies on evaporation from the skin. However at high RH, the air has close to the maximum water vapor that it can hold, so evaporation, and therefore heat loss, is decreased. On the other hand, very dry environments (RH < 20-30%) are also uncomfortable because of their effect on the mucous membranes. The recommended level of indoor humidity is in the range of 30-60% in air conditioned buildings,[20][21] but new standards such as the adaptive model allow lower and higher humidities, depending on the other factors involved in thermal comfort.

A way to measure the amount of relative humidity in the air is to use a system of dry-bulb and wet-bulb thermometers. While the former measures the temperature with no regard to moisture - such in weather reports - the latter has a small wet cloth wrapped around the bulb at its base, so the measurement takes into account water evaporation in the air. The wet-bulb reading will thus always be at least slightly lower than the dry bulb one. The difference between these two temperatures can be used to calculate the relative humidity: the larger the temperature difference between the two thermometers, the lower the level of relative humidity.[22][23]

The wetness of skin in different areas also affects perceived thermal comfort. Humidity can increase wetness on different areas of the body, leading to a perception of discomfort. This is usually localized in different parts of the body, and local thermal comfort limits for skin wettedness differ by locations of the body.[24] The extremities are much more sensitive to thermal discomfort from wetness than the trunk of the body. Although local thermal discomfort can be caused from wetness, the thermal comfort of the whole body will not be affected by the wetness of certain parts.

Recently, the effects of low relative humidity and high air velocity were tested on humans after bathing. Researchers found that low relative humidity engendered thermal discomfort as well as the sensation of dryness and itching. It is recommended to keep relative humidity levels higher in a bathroom than other rooms in the house for optimal conditions.[25]